Mitochondria on the move: Leveraging intercellular mitochondria transfer to boost cancer immunotherapies

An international team of researchers, led by Professor Luca Gattinoni at the Leibniz Institute for Immunotherapy (LIT), has developed an innovative mitochondrial transfer platform to supercharge CD8+ T cells, enabling them to overcome exhaustion and more effectively fight tumor cells.

Background Research:

The mitochondrial transfer is a process that involves the movement of mitochondria from one cell to another. Recent research has demonstrated that this process is not just a random event, but instead a regulated pathway with specific cellular and molecular mechanisms involved. In earlier studies carried out by Prof. Gattinoni’s group at the Leibniz Institute for Immunotherapy (LIT), it was shown how the manipulation of these mechanisms can enhance the anti-tumor properties of certain immune cells in patients with cancer.

CD8+ T cells play a crucial role in our immune system’s fight against cancer. They can recognize and kill tumor cells directly; however, their function often decreases or „exhausts“ during chronic infections or in response to cancers, compromising our body’s ability to effectively defend against disease.

FAQs:

1. What is mitochondrial transfer?

Mitochondrial transfer is the movement of mitochondria (the power generators within our cells) from one cell to another which alters cell functions substantially.

2. How does this discovery benefit cancer immunotherapies?

This discovery introduces an innovative way to supercharge CD8+ T cells‘ fight against tumor cells by supplying them with extra energy via transferred mitochondria.

3. What role do CD8+ T Cells play in fighting diseases such as cancer?

CD8+ T Cells are key players in our immune systems as they can detect and eliminate disease-ridden or cancerous cells directly within our bodies.

4.What does it mean when CD8+ T Cells become „exhausted“?

When they’re described as “exhausted,” it means these particular T Cells have been working very hard over time–therefore are less effective –usually due either chronic infection load or enduring response needed for tackling cancers and more challenging invaders like viruses.

5.Who led this research project?

The project was led by Professor Luca Gattinoni at the Leibniz Institute for Immunotherapy (LIT).

6. What is the next step after this discovery?

While this research provides exciting opportunities to boost cancer immunotherapies, there remain crucial steps including clinical studies and therapeutic model development for bringing these findings into practical, medical use.

7. Where can I read more about this study?

You can read more about the study in detail at http://idw-online.de/de/news839665.

Originamitteilung:

An international team of researchers, led by Professor Luca Gattinoni at the Leibniz Institute for Immunotherapy (LIT), has developed an innovative mitochondrial transfer platform to supercharge CD8+ T cells, enabling them to overcome exhaustion and more effectively fight tumor cells.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Gutes Komplikationsmanagement nach Operationen – Warum die Failure-to-Rescue-Rate im Qualitätsbericht stehen sollte

Patientinnen und Patienten sollten bei der Wahl ihres Krankenhauses nicht nur auf die Erfahrung des Operateurs achten. Denn gerade bei komplexen und risikoreichen Eingriffen kommt es neben dem erfolgreichen Eingriff auch auf das Beherrschen der Komplikationen an, die danach auftreten können. Diese Zahl gibt die sogenannte Failure to Rescue (FTR= Rettungsversagen) – Rate wieder: Sie besagt, dass eine lebensbedrohliche Komplikation nicht rechtzeitig erkannt oder nicht adäquat behandelt wurde und im schlechtesten Fall zum Tod geführt hat.

Read More

Das Gehirn bewegt sich, wenn wir es tun. DFG fördert Kooperation zu Ortszellen und räumlichem Lernen

Forschende aus Magdeburg und Erlangen untersuchen gemeinsam, wie unser Gehirn lernt, sich in Räumen zu orientieren und Erinnerungen speichert. Am Leibniz-Institut für Neurobiologie (LIN) analysieren Wissenschaftler:innen, wie Neuronen im Hippocampus unser räumliches Lernen steuern. Dafür nehmen sie im Zeitraffer auf, was im Gehirn von Mäusen geschieht, während sie verschiedene Orientierungsaufgaben lösen. So gewinnen sie umfangreiche Daten, die im zweiten Schritt von Kooperationspartnern an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) mit einem eigens entwickelten KI-Tool ausgewertet werden.

Read More