Berührungsfreie Diagnose soll Krankheiten am Geruch erkennen

Krankheiten wie Mukoviszidose oder Covid am Geruch zu erkennen, ohne Blut abzunehmen, ohne Abstrich und ohne jede Art von Berührung: Hieran forschen Dr. Sybelle Goedicke-Fritz und ihr Team in der Arbeitsgruppe von Professor Michael Zemlin an der Kinderklinik der Universität des Saarlandes. Ziel ist, Infektionen anhand von Geruchs-Mustern aufzuspüren, die individuell sind wie Fingerabdrücke. Die Forscher trainieren Gassensorik-Messgeräte darauf, diese Muster in der Umgebungsluft ausfindig zu machen. So soll Frühgeborenen und Kindern der Stress diagnostischer Eingriffe erspart bleiben. Ein Anwendungsgebiet wäre auch, Infizierte schnell zu erkennen, bevor sie etwa ein Krankenhaus besuchen.

### Background Research for the Article

**Research Overview**:
In recent years, there has been a growing interest in non-invasive diagnostic methods in medicine. The ability to detect diseases through smell can revolutionize how we diagnose and manage various health conditions. Researchers believe that each person emits unique compounds through their breath or skin, which can indicate the presence of certain diseases, just like fingerprints.

**Current Developments**:
Dr. Sybelle Goedicke-Fritz and her team are at the forefront of this research at the University of Saarland’s Children’s Clinic. They are focused on using gas sensor technology to identify specific scent patterns associated with illnesses such as cystic fibrosis (Mukoviszidose) and COVID-19. This approach not only eliminates the need for invasive procedures like blood draws or swabs but also minimizes discomfort, particularly for vulnerable populations like newborns and children.

### Frequently Asked Questions (FAQ)

1. **What is non-invasive diagnosis by smell?**
Non-invasive diagnosis by smell refers to detecting medical conditions by analyzing scent patterns emitted from a person’s body without requiring any physical contact or invasive procedures like blood samples.

2. **How does it work?**
Researchers train gas sensors to recognize specific volatile organic compounds (VOCs) that indicate certain health conditions when present in exhaled breath or other biological materials.

3. **Which diseases are being targeted with this method?**
Current research aims to identify diseases such as cystic fibrosis and viral infections like COVID-19 based on their unique scent signatures.

4. **Why is this method beneficial?**
This technique is beneficial because it reduces stress associated with traditional diagnostic methods for vulnerable patients, such as premature infants and children, making healthcare interactions less traumatic.

5. **Can this method be used outside of clinical settings?**
Yes! One potential application includes quickly identifying infected individuals before they enter crowded places like hospitals, thereby limiting exposure risks during pandemics or outbreaks.

6. **How accurate is smell-based diagnosis compared to traditional methods?**
While further research is necessary to establish accuracy metrics rigorously, preliminary results are promising in showing that gas sensors can effectively detect specific disease markers with high sensitivity and specificity.

7. **Are there any downsides or limitations associated with this technology?**
As with any emerging technology, challenges may include ensuring widespread access, maintaining calibration standards for accuracy over time, recognizing environmental influences on VOC emissions—such as diet—and addressing privacy concerns regarding biometric data collection.

8. **What stage is this research currently at?**
Dr.Goodicke-Fritz’s team is still conducting studies aimed at refining their gas sensor measurements while interpreting complex human olfactory signals more efficiently before launching from clinical trials into real-world applications.

By presenting information about this innovative approach clearly and transparently—including its potential benefits as well as obstable obstacles—this FAQ seeks not only educate readers about an exciting new area science but also encourages dialogue about future implications advancements health care technologies could have lives us all.

Originamitteilung:

Krankheiten wie Mukoviszidose oder Covid am Geruch zu erkennen, ohne Blut abzunehmen, ohne Abstrich und ohne jede Art von Berührung: Hieran forschen Dr. Sybelle Goedicke-Fritz und ihr Team in der Arbeitsgruppe von Professor Michael Zemlin an der Kinderklinik der Universität des Saarlandes. Ziel ist, Infektionen anhand von Geruchs-Mustern aufzuspüren, die individuell sind wie Fingerabdrücke. Die Forscher trainieren Gassensorik-Messgeräte darauf, diese Muster in der Umgebungsluft ausfindig zu machen. So soll Frühgeborenen und Kindern der Stress diagnostischer Eingriffe erspart bleiben. Ein Anwendungsgebiet wäre auch, Infizierte schnell zu erkennen, bevor sie etwa ein Krankenhaus besuchen.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Lichtmikroskopie: Computermodell ermöglicht bessere Bilder – Neue Deep-Learning-Architektur sorgt für höhere Effizienz

Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte erzielt wurden, gibt es bei der digitalen Verarbeitung weiterhin Entwicklungspotenzial. Ein neues Rechenmodell, das von Forschern des Center for Advanced Systems Understanding (CASUS) am HZDR und des Max-Delbrück-Centrums für Molekulare Medizin auf der Grundlage einer spezifischen Deep-Learning-Architektur entwickelt wurde, ist schneller als herkömmliche Modelle und erreicht dabei die gleiche oder sogar eine bessere Bildqualität.

Read More

Next step in light microscopy image improvement – New deep learning architecture enables higher efficiency

It is the computational processing of images that reveals the finest details of a sample placed under all kinds of different light microscopes. Even though this processing has come a long way, there is still room for increasing for example image contrast and resolution. Based on a unique deep learning architecture, a new computational model developed by researchers from the Center for Advanced Systems Understanding (CASUS) at HZDR and the Max Delbrück Center for Molecular Medicine is faster than traditional models while matching or even surpassing their images’ quality. The model, called Multi-Stage Residual-BCR Net (m-rBCR), was specifically developed for microscopy images.

Read More