Genetic diagnostics of ultra-rare diseases: Large multicenter study identifies 34 new genetic diseases

The majority of rare diseases have a genetic cause. The underlying genetic alteration can be found more and more easily, for example by means of exome sequencing (ES), leading to a molecular genetic diagnosis. ES is an examination of all sections of our genetic material (DNA) that code for proteins. As part of a Germany-wide multicenter study, ES data was collected from 1,577 patients and systematically evaluated.

Background Research:

Genetic diseases are disorders caused by abnormalities in DNA and can be divided into three categories: single-gene, chromosomal, and complex. Single-gene disorders like cystic fibrosis occur due to defects in a single gene, chromosomal disorders result from inconsistencies with entire chromosomes or part of chromosomes (such as Down Syndrome), and complex genetic conditions result from a combination of environmental factors along with slight variations in genes.

Exome sequencing (ES) is a technique used for sequencing all of the protein-coding sections of genes in a genome known as exomes. An exome makes up about 1% of the genome but contains around 85% of known disease-related variants, making this method an efficient way to identify potential genetic causes relative to whole-genome sequencing methods.

FAQ:

Q1: What exactly is this study about?
A: This study focuses on detecting new ultra-rare diseases through exome sequencing (ES). ES allows us to examine all sections of our genetic material that codes for proteins – identifying rare disease-causing genetic mutations.

Q2: How many patients were involved in the multicenter study?
A: A total number of 1577 patients were systematically evaluated throughout Germany as part of this study.

Q3: What is Exome Sequencing (ES)?
A: ES is an advanced technology used for analysing various parts or exons that code for proteins within our DNA. This technique has proved beneficial towards mapping out molecular genetics leading towards specific diagnoses.

Q4: How many new genetic diseases have been identified through this research?
A: The large multicenter study has succeeded in identifying 34 new ultra-rare genetic diseases using molecular genetics techniques like ES.

Q5: Why are these discoveries significant?
A:The identification of these syndromes expands our understanding on tiny proportions among broader range disorders. Furthermore, it paves way towards more comprehensive diagnostic services benefitting those rare patients suffering from such diseases.

Q6: What are the implications for people suffering from these ultra-rare diseases?
A: These findings provide an opportunity for potentially more accurate diagnoses, which can lead to targeted therapeutic approaches and better management of the diseases through personalized medicine.

Q7: Where can I find more information about this research?
A: More detailed information is available on the idw-online.de website. You can follow this link to access the press release directly – http://idw-online.de/de/news837278

Originamitteilung:

The majority of rare diseases have a genetic cause. The underlying genetic alteration can be found more and more easily, for example by means of exome sequencing (ES), leading to a molecular genetic diagnosis. ES is an examination of all sections of our genetic material (DNA) that code for proteins. As part of a Germany-wide multicenter study, ES data was collected from 1,577 patients and systematically evaluated.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Neue Forschungsmöglichkeiten erweitern Verständnis und Diagnose neurologischer Erkrankungen

Es ist ein möglicher Durchbruch, der Millionen von Menschen weltweit hilft. In zwei kürzlich veröffentlichten Artikeln nutzten Constructor University Professor Dr. Amir Jahanian-Najafabadi und CU-Absolvent Khaled Bagh graphenbasierte Netzwerke und Elektroenzephalographie (EEG) als nicht-invasive Möglichkeiten, die Gehirntätigkeit zu messen. Erzielen wollen sie damit neue Erkenntnisse über die sogenannte Major Depressive Disorder (MDD). Diese komplexe, heterogene psychiatrische Erkrankung betrifft Millionen von Erwachsenen und Kindern. Aktuell bedarf es noch weiterer Forschung – doch der Beitrag stellt einen Meilenstein zum besseren Verständnis und der besseren Diagnose der Erkrankung dar.

Read More

Die Sprache der Organe: Wie gestörte Kommunikation zu Krankheiten führt

Veränderungen der Ernährung und Umwelt stellen den menschlichen Stoffwechsel laufend vor neue Herausforderungen. Dabei wirken verschiedene Organe in einer komplexen Interaktion zusammen, um den Stoffwechsel im Gleichgewicht zu halten. Der Körper verfügt über ein ausgeklügeltes System der Kommunikation, das es Zellen ermöglicht, Stoffwechselwege in entfernten Geweben zu beeinflussen. Eine Fehlregulation dieser Kommunikationswege trägt zu einer Vielzahl von Krankheiten bei.
Zwei interdisziplinäre Projekte der Deutschen Zentren der Gesundheitsforschung (DZG) erforschen die komplexen Netzwerke und Mechanismen, die den Stoffwechsel steuern, mit dem Ziel, neue Therapieansätze zu entwickeln.

Read More