Urm1 protects proteins in stress situations

To prevent proteins from being damaged during cellular stress, they are concentrated in so-called stress granules. Scientists from the department of Cellular Biochemistry at the Max Planck Institute of Biochemistry have now been able to show for the first time that the protein Urm1 has a critical role in this process. In yeast cells, the ubiquitin-like protein facilitates the onset of phase separation and thus the formation of stress granules. The results of the study were published in the scientific journal Cell.

Background Research:

Stress granules are small particles made up of RNAs and proteins that form in cells when they are under stress. These granules help to protect proteins from potential damage caused by cellular stress, which can disrupt normal cell functions and even lead to disease.

Ubiquitin is a small protein that gets attached to other proteins in cells in order to regulate their function or degradation. Urm1, which is considered a ‚ubiquitin-like‘ protein due its similarity with ubiquitin’s function, helps the beginning of phase separation – an essential step for the formation of stress granules.

Max Planck Institute of Biochemistry, where this research was conducted, is a renowned German institute well-established for scientific advancements. The department of Cellular Biochemistry focuses on understanding molecular processes inside cells and how they interact with each other.

FAQs:

Q1: What are stress granules?
A: Stress granules are small structures within cells where various proteins and RNAs aggregate under cellular stress conditions. They act as protective storage spaces preventing potential damage or misfolding of these vital molecules until the cell can return to normal conditions.

Q2: What role does Urm1 play in stress situations?
A: In stressful situations within yeast cells, Urm1 plays a vital role by facilitating the onset of phase separation – an important process leading to formation of these protective stress granule compartments within the cell.

Q3: How does phase separation aid in creation of these ‚protective bubbles‘?
A: Phase separation is an essential process that leads to gathering or concentring certain specific molecules from the bulk mixture (similar like oil separates itself from water). Here Urm1 helps start this phase segregation process so specific proteins bound for deterioration could be saved gathered together forming visible nodular structures called Stress Granules inside cell’s cytoplasm (intracellular fluid).

Q4: Does this study provide new insights into protection against cellular stress?
A: Yes, this study reveals for the first time the critical role of Urm1 in aiding protection against cellular stress. The better understanding of these processes is a big step forward towards developing new therapeutic strategies against diseases linked with faulty protein degradation like neurodegenerative disorders.

Q5: Why is further research into proteins like Urm1 important?
A: Learning more about protein behavior under stress conditions can contribute to development of therapies for conditions associated with improper protein functioning or degradation, such as Alzheimer’s and other neurodegenerative diseases. Further research into proteins like Urm1 can add to our understanding about how cells respond and adapt to various stress conditions.

Q6: Where was this research conducted?
A: This study was conducted at the department of Cellular Biochemistry at the Max Planck Institute of Biochemistry in Germany.

Originamitteilung:

To prevent proteins from being damaged during cellular stress, they are concentrated in so-called stress granules. Scientists from the department of Cellular Biochemistry at the Max Planck Institute of Biochemistry have now been able to show for the first time that the protein Urm1 has a critical role in this process. In yeast cells, the ubiquitin-like protein facilitates the onset of phase separation and thus the formation of stress granules. The results of the study were published in the scientific journal Cell.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Gutes Komplikationsmanagement nach Operationen – Warum die Failure-to-Rescue-Rate im Qualitätsbericht stehen sollte

Patientinnen und Patienten sollten bei der Wahl ihres Krankenhauses nicht nur auf die Erfahrung des Operateurs achten. Denn gerade bei komplexen und risikoreichen Eingriffen kommt es neben dem erfolgreichen Eingriff auch auf das Beherrschen der Komplikationen an, die danach auftreten können. Diese Zahl gibt die sogenannte Failure to Rescue (FTR= Rettungsversagen) – Rate wieder: Sie besagt, dass eine lebensbedrohliche Komplikation nicht rechtzeitig erkannt oder nicht adäquat behandelt wurde und im schlechtesten Fall zum Tod geführt hat.

Read More

Das Gehirn bewegt sich, wenn wir es tun. DFG fördert Kooperation zu Ortszellen und räumlichem Lernen

Forschende aus Magdeburg und Erlangen untersuchen gemeinsam, wie unser Gehirn lernt, sich in Räumen zu orientieren und Erinnerungen speichert. Am Leibniz-Institut für Neurobiologie (LIN) analysieren Wissenschaftler:innen, wie Neuronen im Hippocampus unser räumliches Lernen steuern. Dafür nehmen sie im Zeitraffer auf, was im Gehirn von Mäusen geschieht, während sie verschiedene Orientierungsaufgaben lösen. So gewinnen sie umfangreiche Daten, die im zweiten Schritt von Kooperationspartnern an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) mit einem eigens entwickelten KI-Tool ausgewertet werden.

Read More