When bacteria are buckling

Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. This was discovered by the research group of Stefan Karpitschka, group leader at the Max Planck Institute for Dynamics and Self-Organization and professor at the University of Konstanz. The results provide an important basis for the use of cyanobacteria in modern biotechnology.

Background Research:

Filamentous cyanobacteria are a type of bacteria that are known for their ability to photosynthesize, hence they can create energy from the sun like plants. They are important organisms in several ecosystems, including some extreme environments such as hot, alkaline springs and hypersaline habitats. They can form extensive mats or blooms and participate in the nitrogen cycle.

Stefan Karpitschka is a group leader at the Max Planck Institute for Dynamics and Self-Organization and professor at the University of Konstanz. His research focuses mainly on fluid dynamics and soft matter physics.

Modern biotechnology utilizes bacteria such as cyanobacteria for sustainable solutions including biofuel production, carbon sequestration, etc.

FAQs:

Q1: Who is Stefan Karpitschka?
A1: Stefan Karpitschka is a group leader at the Max Planck Institute for Dynamics and Self-Organizaton who’s also serving as a professor at the University of Konstanz.

Q2: What did Stefan Karpitschka’s research find out about filamentous cyanobacteria?
A2: His team discovered that filamentous cyanobacteria buckle when they reach a certain length upon encountering an obstacle.

Q3: Why do filamentous cyanobacteria buckle?
A3: The precise mechanism isn’t clear yet but it could be connected with tensions or mechanical properties within those bacterial cells upon reaching critical cell length or environmental stress factors.

Q4: How can these findings about buffers apply to modern biotechnology?
A4:The behavior of filamentous cyanobacteria under obstacles may have applications in areas where these organisms‘ abilities like photosynthesis or their natural tendency to accumulate into structured colonies (biofilms) could be harnessed – for example biofuels production systems or bioremediation tasks where you want control over spatial distribution etc .

Q5 :What kind of environments can these cyanobacteria live in?
A5: Cyanobacteria can survive in a variety of habitats, and some types – like the filamentous ones discussed here- are even found in extreme environments such as hot, alkaline springs and hypersaline conditions. They have been a major component of Earth’s ecosystems for billions of years.

Q6: How does this discovery about buckling behavior affects the broader understanding about bacteria movements or biophysics?
A6: This research provides new insights into how filamentous bacterial cells cope with physical obstructions which might enhance our broader understanding of processes like bacterial motility, pattern formation etc. The findings open new possible directions to investigate mechanisms that regulate bacteria shapes or behaviors not only separately but also as collective entities.

Originamitteilung:

Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. This was discovered by the research group of Stefan Karpitschka, group leader at the Max Planck Institute for Dynamics and Self-Organization and professor at the University of Konstanz. The results provide an important basis for the use of cyanobacteria in modern biotechnology.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Gutes Komplikationsmanagement nach Operationen – Warum die Failure-to-Rescue-Rate im Qualitätsbericht stehen sollte

Patientinnen und Patienten sollten bei der Wahl ihres Krankenhauses nicht nur auf die Erfahrung des Operateurs achten. Denn gerade bei komplexen und risikoreichen Eingriffen kommt es neben dem erfolgreichen Eingriff auch auf das Beherrschen der Komplikationen an, die danach auftreten können. Diese Zahl gibt die sogenannte Failure to Rescue (FTR= Rettungsversagen) – Rate wieder: Sie besagt, dass eine lebensbedrohliche Komplikation nicht rechtzeitig erkannt oder nicht adäquat behandelt wurde und im schlechtesten Fall zum Tod geführt hat.

Read More

Das Gehirn bewegt sich, wenn wir es tun. DFG fördert Kooperation zu Ortszellen und räumlichem Lernen

Forschende aus Magdeburg und Erlangen untersuchen gemeinsam, wie unser Gehirn lernt, sich in Räumen zu orientieren und Erinnerungen speichert. Am Leibniz-Institut für Neurobiologie (LIN) analysieren Wissenschaftler:innen, wie Neuronen im Hippocampus unser räumliches Lernen steuern. Dafür nehmen sie im Zeitraffer auf, was im Gehirn von Mäusen geschieht, während sie verschiedene Orientierungsaufgaben lösen. So gewinnen sie umfangreiche Daten, die im zweiten Schritt von Kooperationspartnern an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) mit einem eigens entwickelten KI-Tool ausgewertet werden.

Read More