Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien

Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

Gefriergussverfahren sind Techniken zum Herstellen komplexer, hochporöser Materialien für vielfältige Anwendungen, einschließlich Medizin, Umwelt- und Energietechnik. Ein neuer Artikel im Fachjournal „Nature Reviews Methods Primer“ bietet praktische Anleitungen zu diesen Prozessen und hebt die Möglichkeiten der Tomoskopie bei der Analyse dieser Materialien hervor.

FAQ:
Q: Was sind Gefriergussverfahren?
A: Gefriergussverfahren sind eine kostengünstige Methode zur Herstellung von hochporösen Materialien. Sie schaffen Strukturen mit einer hierarchischen Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen.

Q: Wofür können gefriergegossene Materialien verwendet werden?
A: Gefriergegossene Materialien haben vielfältige Anwendungsmöglichkeiten in verschiedenen Bereichen wie Medizin, Umwelttechnologie und Erneuerbare Energietechnik.

Q: Was ist das Besondere an dem Artikel im „Nature Reviews Methods Primer“?
A: Der Artikel fungiert nicht nur als praktische Anleitung zu Gefriergussverfahren; er bietet auch einen umfassenden Überblick über das aktuelle Leistungspotenzial dieser Technologie und neue potenzielle Einsatzbereiche. Ein besonderes Augenmerk liegt dabei auf der Verwendung von Tomoskopie zur Analyse der hergestellten Materialien.

Q: Was ist Tomoskopie?
A: Die Tomoskopie ist eine Art von Bildgebungsverfahren – vergleichbar mit einem CT-Scan – das detaillierte dreidimensionale Bilder eines Objekts liefert. In diesem Kontext wird sie zur Analyse der komplexen Strukturen verwendet, die durch Gefriergussverfahren erzeugt werden.

Q: Warum sind gefriergegossene Materialien wichtig in der Medizin?
A: Wegen ihrer einzigartigen Eigenschaften – einschließlich hoher Porosität und gerichteter Struktur – können gefriergegossene Materialien als kunstgemachte Gewebe oder Implantate dienen, um die Heilung im Körper zu unterstützen oder verletzte Bereiche wieder aufzubauen. Sie können auch zur kontrollierten Freisetzung von Medikamenten und anderen therapeutischen Mitteln verwendet werden.

Originamitteilung:

Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

share this recipe:
Facebook
Twitter
Pinterest

Weitere spannende Artikel

Gesundheits- und Umweltexperte an der Hochschule Coburg werden

Gesundheit oder Umwelt: Was darfs sein? Wenn Studierende der Hochschule Coburg nach drei Semestern die Grundlagen der Bioanalytik erlernt haben, können sie sich spezialisieren. Auch im Masterstudium dürfen sie ihren Fokus auf Bioinformatik, Ökotoxikologie oder Humanbiologie setzen. Dadurch wird die Lehre flexibler und zeiteffizient. Zwei neuberufene Professoren geben Einblicke in das Studium und ihre Arbeit als Professoren.

Read More

Glioblastom: Humanin blockieren – Chemotherapie wirksam machen

Strahlen- und/oder Chemotherapie nach der Operation – das sind die Behandlungsoptionen bei einem der gefährlichsten Gehirntumore überhaupt, dem Glioblastom. Doch bis heute sind diese Tumoren unheilbar, mit einer mittleren Überlebensdauer von 16 Monaten nach Diagnosestellung. Nun hat ein Team internationaler Forschender unter Federführung von Prof. Dr. Rainer Glaß vom LMU Klinikum München einen Mechanismus entdeckt, der die Krebszellen gegen gängige Chemotherapeutika unempfindlich macht. Die Ergebnisse wurden jetzt in der Fachzeitschrift „Cell Reports Medicine“ veröffentlicht.

Read More